Author Archives: gdkm04

Conjugation of bone grafts with NO-delivery dinitrosyl iron complexes promotes synergistic osteogenesis and angiogenesis in rat calvaria bone defects

王雲銘教授研究團隊發表研究成果於 Journal of Materials Chemistry B

連結網址:https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb00587a

 Abstract

Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH] thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (β-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.

Transcriptomic analysis of World Trade Center particulate Matter-induced pulmonary inflammation and drug treatments

楊進木教授研究團隊發表研究成果於Environment International

連結網址:https://www.sciencedirect.com/science/article/pii/S0160412023003008?via%3Dihub

Abstract

Over 400,000 people are estimated to have been exposed to World Trade Center particulate matter (WTCPM) since the attack on the Twin Towers in Lower Manhattan on September 11, 2001. Epidemiological studies have found that exposure to dust may cause respiratory ailments and cardiovascular diseases. However, limited studies have performed a systematic analysis of transcriptomic data to elucidate the biological responses to WTCPM exposure and the therapeutic options. Here, we developed an in vivo mouse exposure model of WTCPM and administered two drugs (i.e., rosoxacin and dexamethasone) to generate transcriptomic data from lung samples. WTCPM exposure increased the inflammation index, and this index was significantly reduced by both drugs. We analyzed the transcriptomics derived omics data using a hierarchical systems biology model (HiSBiM) with four levels, including system, subsystem, pathway, and gene analyses. Based on the selected differentially expressed genes (DEGs) from each group, WTCPM and the two drugs commonly affected the inflammatory responses, consistent with the inflammation index. Among these DEGs, the expression of 31 genes was affected by WTCPM exposure and consistently reversed by the two drugs, and these genes included Psme2, Cldn18, and Prkcd, which are involved in immune- and endocrine-related subsystems and pathways such as thyroid hormone synthesis, antigen processing and presentation, and leukocyte transendothelial migration. Furthermore, the two drugs reduced the inflammatory effects of WTCPM through distinct pathways, e.g., vascular-associated signaling by rosoxacin, whereas mTOR-dependent inflammatory signaling was found to be regulated by dexamethasone. To the best of our knowledge, this study constitutes the first investigation of transcriptomics data of WTCPM and an exploration of potential therapies. We believe that these findings provide strategies for the development of promising optional interventions and therapies for airborne particle exposure.

Combining virtual screening with cis-/trans-cleavage enzymatic assays effectively reveals broad-spectrum inhibitors that target the main proteases of SARS-CoV-2 and MERS-CoV

陸志豪副教授研究團隊發表研究成果於 Antiviral Research

連結網址:https://www.sciencedirect.com/science/article/pii/S0166354223001316?dgcid=coauthor

Abstract

The main protease (Mpro) of SARS-CoV-2 is essential for viral replication, which suggests that the Mpro is a critical target in the development of small molecules to treat COVID-19. This study used an in-silico prediction approach to investigate the complex structure of SARS-CoV-2 Mpro in compounds from the United States National Cancer Institute (NCI) database, then validate potential inhibitory compounds against the SARS-CoV-2 Mpro in cis- and trans-cleavage proteolytic assays. Virtual screening of ∼280,000 compounds from the NCI database identified 10 compounds with highest site-moiety map scores. Compound NSC89640 (coded C1) showed marked inhibitory activity against the SARS-CoV-2 Mpro in cis-/trans-cleavage assays. C1 strongly inhibited SARS-CoV-2 Mpro enzymatic activity, with a half maximal inhibitory concentration (IC50) of 2.69 μM and a selectivity index (SI) of >74.35. The C1 structure served as a template to identify structural analogs based on AtomPair fingerprints to refine and verify structure-function associations. Mpro-mediated cis-/trans-cleavage assays conducted with the structural analogs revealed that compound NSC89641 (coded D2) exhibited the highest inhibitory potency against SARS-CoV-2 Mpro enzymatic activity, with an IC50 of 3.05 μM and a SI of >65.57. Compounds C1 and D2 also displayed inhibitory activity against MERS-CoV-2 with an IC50 of <3.5 μM. Thus, C1 shows potential as an effective Mpro inhibitor of SARS-CoV-2 and MERS-CoV. Our rigorous study framework efficiently identified lead compounds targeting the SARS-CoV-2 Mpro and MERS-CoV Mpro.

One-step-one-pot hydrothermally derived metal-organic-framework-nanohybrids for integrated point-of-care diagnostics of SARS-CoV-2 viral antigen/pseudovirus utilizing electrochemical biosensor chip

王雲銘教授研究團隊發表研究成果於 Sensors and Actuators B: Chemical

連結網址:

https://www.sciencedirect.com/science/article/pii/S0925400523006755

 

Abstract

The COVID-19 pandemic has become a global catastrophe, affecting the health and economy of the human community. It is required to mitigate the impact of pandemics by developing rapid molecular diagnostics for SARS-CoV-2 virus detection. In this context, developing a rapid point-of-care (POC) diagnostic test is a holistic approach to the prevention of COVID-19. In this context, this study aims at presenting a real-time, biosensor chip for improved molecular diagnostics including recombinant SARS-CoV-2 spike glycoprotein and SARS-CoV-2 pseudovirus detection based on one-step-one-pot hydrothermally derived CoFeBDCNH2-CoFe2O4 MOF-nanohybrids. This study was tested on a PalmSens-EmStat Go POC device, showing a limit of detection (LOD) for recombinant SARS-CoV-2 spike glycoprotein of 6.68 fg/mL and 6.20 fg/mL in buffer and 10% serum-containing media, respectively. To validate virus detection in the POC platform, an electrochemical instrument (CHI6116E) was used to perform dose dependent studies under similar experimental conditions to the handheld device. The results obtained from these studies were comparable indicating the capability and high detection electrochemical performance of MOF nanocomposite derived from one-step-one-pot hydrothermal synthesis for SARS-CoV-2 detection for the first time. Further, the performance of the sensor was tested in the presence of Omicron BA.2 and wild-type D614G pseudoviruses.

Osimertinib Induces the Opposite Effect of Proliferation and Migration in the Drug Resistance of EGFR-T790M Non-small Cell Lung Cancer Cells

趙瑞益教授研究團隊發表研究成果於Anti-Cancer Agents in Medicinal Chemistry

連結網址:https://www.eurekaselect.com/article/129735

Abstract

Background: Lung cancer has become one of the leading causes of cancer incidence and mortality worldwide. Non-small cell lung carcinoma (NSCLC) is the most common type among all lung cancer cases. NSCLC patients contained high levels of activating epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion, L858R and T790M. Osimertinib, a third-generation of EGFR tyrosine kinase inhibitor (EGFR-TKI), has therapeutic efficacy on the EGFR-T790M mutation of NSCLC patients; however, treatment of osimertinib still can induce drug resistance in lung cancer patients. Therefore, investigation of the drug resistance mechanisms of osimertinib will provide novel strategies for lung cancer therapy.

Methods: The H1975OR osimertinib-resistant cell line was established by prolonged exposure with osimertinib derived from the H1975 cells. The cell proliferation ability was evaluated by the cell viability and cell growth assays. The cell migration ability was determined by the Boyden chamber assays. The differential gene expression profile was analyzed by genome-wide RNA sequencing. The protein expression and location were analyzed by western blot and confocal microscopy.

Results: In this study, we established the osimertinib-resistant H1975 (T790M/L858R) cancer cells, named the H1975OR cell line. The cell growth ability was decreased in the H1975OR cells by comparison with the H1975 parental cells. Conversely, the cell migration ability was elevated in the H1975OR cells. We found the differential gene expression profile of cell proliferation and migration pathways between the H1975OR and H1975 parental cells. Interestingly, the protein levels of phospho-EGFR, PD-L1, E-cadherin and β-catenin were decreased, but the survivin and N-cadherin proteins were increased in the H1975OR drug-resistant cells.

Conclusion: Osimertinib induces the opposite effect of proliferation and migration in the drug resistance of EGFRT790M lung cancer cells. We suggest that differential gene and protein expressions in the cell proliferation and migration pathways may mediate the drug resistance of osimertinib in lung cancer cells. Understanding the molecular drugresistant mechanisms of proliferation and migration pathways of osimertinib may provide novel targets and strategies for the clinical treatment of EGFR-TKIs in lung cancer patients.

Preventing ischemia-reperfusion injury by acousto-mechanical local oxygen delivery

何奕儒助理教授研究團隊發表研究成果於Journal of Controlled Release

連結網址:https://www.sciencedirect.com/science/article/pii/S0168365923001852?via%3Dihub

Abstract

Ischemia-reperfusion (I/R) injury is a pathological process that causes vascular damage and dysfunction which increases recurrence and/or mortality in myocardial infarction, ischemic stroke, and organ transplantation. We hypothesized that ultrasound-stimulated oxygen-loaded microbubble (O2-MB) cavitation would enhance mechanical force on endothelium and simultaneously release oxygen locally at the targeted vessels. This cooperation between biomechanical and biochemical stimuli might modulate endothelial metabolism, providing a potential clinical approach to the prevention of I/R injury. Murine hindlimb and cardiac I/R models were used to demonstrate the feasibility of injury prevention by O2-MB cavitation. Increased mechanical force on endothelium induced eNOS-activated vasodilation and angiogenesis to prevent re-occlusion at the I/R vessels. Local oxygen therapy increased endothelial oxygenation that inhibited HIF-1α expression, increased ATP generation, and activated cyclin D1 for cell repair. Moreover, a decrease in interstitial H2O2 level reduced the expression of caspase3, NFκB, TNFα, and IL6, thus ameliorating inflammatory responses. O2-MB cavitation showed efficacy in maintaining cardiac function and preventing myocardial fibrosis after I/R. Finally, we present a potential pathway for the modulation of endothelial metabolism by O2-MB cavitation in relation to I/R injury, wound healing, and vascular bioeffects.

Erinacine S from Hericium erinaceus mycelium promotes neuronal regeneration by inducing neurosteroids accumulation

黃兆祺教授研究團隊發表研究成果於Journal of Food and Drug Analysis

連結網址:https://www.jfda-online.com/journal/vol31/iss1/3/

Abstract

Erinacines derived from Hericium erinaceus have been shown to possess various health benefits including neuroprotective effect against neurodegenerative diseases, yet the underlying mechanism remains unknown. Here we found that erinacine S enhances neurite outgrowth in a cell autonomous fashion. It promotes post-injury axon regeneration of PNS neurons and enhances regeneration on inhibitory substrates of CNS neurons. Using RNA-seq and bioinformatic analyses, erinacine S was found to cause the accumulation of neurosteroids in neurons. ELISA and neurosteroidogenesis inhibitor assays were performed to validate this effect. This research uncovers a previously unknown effect of erinacine S on raising the level of neurosteroids.

Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity

謝仁俊教授研究團隊發表研究成果於Frontiers in Neuroscience

連結網址:https://www.frontiersin.org/articles/10.3389/fnins.2023.1114771/full

 

Introduction: This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate).

 

Methods: We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled.

 

Results: VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity.

 

Discussion: The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.

Role of the stress-responsive two-component system CpxAR in regulating fimbriae expression in Klebsiella pneumoniae CG43

彭慧玲教授研究團隊發表研究成果於J Microbiol Immunol Infect.

連結網址:https://pubmed.ncbi.nlm.nih.gov/36898943/

Abstract

Background: CpxAR is a two-component system that allows bacteria to reorganize
envelope structures in response to extracellular stimuli. CpxAR negatively affects type 1 fimbriae expression in Klebsiella pneumoniae CG43, a hypervirulent strain. The involvement of CpxAR in the regulation of type 3 fimbriae expression was investigated.
Methods: cpxAR, cpxA, and cpxR gene-specific deletion mutants were generated. The deletion effects on the expression of type 1 and type 3 fimbriae were analyzed via measuring the promoter activity, mannose sensitive yeast agglutination activity, biofilm formation, and the production of the major pilins FimA and MrkA respectively. RNA sequencing analysis of CG43S3, DcpxAR, DcpxR and Dfur was employed to study the regulatory mechanism influencing the expression of type 3 fimbriae.
Results: Deletion of cpxAR increased type 1 and type 3 fimbrial expression. Comparative transcriptomic analysis showed that the expression of oxidative stress-responsive enzymes, type 1 and type 3 fimbriae, and iron acquisition and homeostasis control systems were differentially affected by cpxAR or cpxR deletion. Subsequent analysis revealed that the small RNA RyhB negatively affects the expression of type 3 fimbriae, while CpxAR positively controls ryhB expression. Finally, the site-directed mutation of the predicted interacting sequences of RyhB with the mRNA of MrkA attenuated the RyhB repression of type 3 fimbriae.

A genome-wide association study (GWAS) of the personality constructs in CPAI-2 in Taiwanese Hakka populations

林勇欣副教授研究團隊發表研究成果於PLOS ONE

連結網址:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281903

Abstract

Here in this study we adopted genome-wide association studies (GWAS) to investigate the genetic components of the personality constructs in the Chinese Personality Assessment Inventory 2 (CPAI-2) in Taiwanese Hakka populations, who are likely the descendants of a recent admixture between a group of Chinese immigrants with high emigration intention and a group of the Taiwanese aboriginal population generally without it. A total of 279 qualified participants were examined and genotyped by an Illumina array with 547,644 SNPs to perform the GWAS. Although our sample size is small and that unavoidably limits our statistical power (Type 2 error but not Type 1 error), we still found three genomic regions showing strong association with Enterprise, Diversity, and Logical vs. Affective Orientation, respectively. Multiple genes around the identified regions were reported to be nervous system related, which suggests that genetic variants underlying the certain personalities should indeed exist in the nearby areas. It is likely that the recent immigration and admixture history of the Taiwanese Hakka people created strong linkage disequilibrium between the emigration intention-related genetic variants and their neighboring genetic markers, so that we could identify them despite with only limited statistical power.

zh_TW